抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

PyTorch学习记录

PyTorch是一个Python机器学习框架

张量

Tensors

Tensors很像矩阵、向量,在PyTorch中使用Tensors编码输入和输出

构造

import torch
import numpy as np

# 直接构造
data = [[1, 2],[3, 4]]
x_data = torch.tensor(data)

# 使用numpy array转换
np_array = np.array(data)
x_np = torch.from_numpy(np_array)

# 构造一个指定大小的Tensors
shape = (2,3,)
rand_tensor = torch.rand(shape) # 生成一个2x3的Tensors,内容是随机
ones_tensor = torch.ones(shape) # 生成一个2x3的Tensors,内容全为1
zeros_tensor = torch.zeros(shape) # 生成一个2x3的Tensors,内容全为0

# 生成从0到9的tensor
a = torch.arange(10) # tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

矩阵运算

# 矩阵乘法
C = torch.matmul(A, B)

拼接

# 沿着纬度 dim 进行拼接
tensor1 = torch.tensor([[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]])

tensor2 = torch.tensor([[13, 14, 15, 16],
[17, 18, 19, 20],
[21, 22, 23, 24]])

result1 = torch.cat([tensor1, tensor2], dim=0)
# tensor([[ 1, 2, 3, 4],
# [ 5, 6, 7, 8],
# [ 9, 10, 11, 12],
# [13, 14, 15, 16],
# [17, 18, 19, 20],
# [21, 22, 23, 24]])

result2 = torch.cat([tensor1, tensor2], dim=1)
# tensor([[ 1, 2, 3, 4, 13, 14, 15, 16],
# [ 5, 6, 7, 8, 17, 18, 19, 20],
# [ 9, 10, 11, 12, 21, 22, 23, 24]])

重复

a = torch.tensor([1, 2, 3])

# 重复每个元素两次
b = torch.repeat_interleave(a, 2) # tensor([1, 1, 2, 2, 3, 3])

# 根据tensor重复
repeats = torch.tensor([2, 3, 1])
c = torch.repeat_interleave(a, repeats) # tensor([1, 1, 2, 2, 2, 3])

保存和加载权重

torch.save(model, 'model.pth')
model = torch.load('model.pth')

nn

Module

所有模型层的基类

# 继承 nn.Module,实现一个Attention
class Attention(nn.Module):
def __init__(self, embed_dim):
super().__init__()
self.embed_dim = embed_dim
self.query = nn.Linear(embed_dim, embed_dim)
self.key = nn.Linear(embed_dim, embed_dim)
self.value = nn.Linear(embed_dim, embed_dim)

def forward(self, query, key, value):
# Implement attention mechanism
pass

Sequential

# 将多层网络按顺序级联
model = nn.Sequential(
nn.Conv2d(1, 20, 5),
nn.ReLU(),
nn.Conv2d(20, 64, 5),
nn.ReLU()
)
# 等同于
model2 = nn.Sequential()
model2.add_module("conv1", nn.Conv2d(1, 20, 5))
model2.add_module('relu1', nn.ReLU())
model2.add_module('conv2', nn.Conv2d(20, 64, 5))
model2.add_module('relu2', nn.ReLU())

Sequential有自动前向传播,模型层只要串在一起,就能自动处理forward,而ModuleList需要手动处理

ModuleList

class Encoder(nn.Module):
def __init__(self):
self.down_blocks = nn.ModuleList([])
for i in xxx:
down_block = ResnetDownsampleBlock2D(...)
self.down_blocks.append(down_block)
# nn.ModuleList需要自定处理前向传播,这里循环处理了sample,自由度更高,更适合复杂的库作者
def forward(self, sample: torch.Tensor) -> torch.Tensor:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for down_block in self.down_blocks:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(down_block), sample, use_reentrant=False
)
return sample

全连接层

# 定义一个全连接层(线性层),将输入纬度映射到输出纬度
query = nn.Linear(in_features, out_features)
  • in_features输入纬度
  • out_features:输出纬度

Embedding

是一个查找表,将离散输入转为连续向量,常用于将单词转为向量

position_encoding = nn.Embedding(targets_length, d_model)

卷积层

# 定义一个二维卷积层
conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1)
  • in_channels:输入信号的通道数,比如RGB就是3,灰度就是1
  • out_channels:输出的深度
  • kernel_size:卷积核大小
  • stride:卷积核移动的步长
  • padding_mode:边界填充规则,默认为zeros

逆卷积层

# 定义一个逆卷积层,用于放大特征图,实现上采样
conv_transpose = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=3, stride=2, padding=1)

激活函数

激活函数主要是为模型引入非线性,好的激活函数能加速训练、缓解梯度爆炸

激活函数 nn
Sigmoid nn.Sigmoid()
ReLU nn.ReLU()
Sigmoid Linear Unit nn.SiLU()
Softmax nn.Softmax(dim=None)
Exponential Linear Unit nn.ELU()

Dropout

dropout = nn.Dropout(p=dropout_rate)

Identity

恒等映射,不做任何处理,直接返回输入

self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

transforms

  • transforms.Compose:将多个数据变化操作串联
  • transforms.CenterCrop:中间裁剪
  • transforms.Resize:调整大小
  • transforms.ToTensor:图片数据转为tensor

评论